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Figure 1: KeyFlow keyboard glide gestures. KeyFlow integrates mouse functionality into the keyboard, allowing users to glide
fingers to move the cursor (a-d) and select words (e-f) without pressing keys.

ABSTRACT

Despite typing being a critical operation in the digital age, users
still need to frequently switch between the mouse and keyboard
while typing. We introduce KeyFlow, a tool that integrates mouse
functionality into the keyboard through machine learning, allowing
users to glide their fingers across the keyboard surface to move
the cursor. The whole process does not press the keys down to
differentiate from normal typing and avoid false touches. KeyFlow
uses any computer-built-in microphones to capture the acoustic
features of these gliding gestures, requiring no specialized equip-
ment and can be set up and tested independently within 5 minutes.
Our user research indicates that, compared to traditional keyboard
and mouse methods, this system reduces hand movement distance
by 78.3%, making the typing experience more focused.
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1 INTRODUCTION

As digital communication continues to grow, proficient typing is in-
creasingly important. Therefore, how to improve typing efficiency
and experience has become the focus of researchers. Innovations
in this area include autocorrection [11, 16], virtual soft keyboards
[4, 9, 15], keyboard layouts [1], and auxiliary devices [10, 12]. A
significant challenge in maintaining typing fluency is moving the
cursor while typing, as switching between the keyboard and the
mouse takes an average of 0.36 seconds each time [3], and using the
arrow keys takes 0.21 seconds each time [3], both of which disrupt
typing flow. Some researchers [5] have attempted motion sens-
ing through keyboard presses, but this approach suffers from false
touches. Other researchers have used additional sensors [10, 12] or
desktop cameras [13, 14] to capture motion. However, these meth-
ods require extra hardware, which is inefficient and cumbersome
to set up and maintain.

We introduce KeyFlow (Figure 1), an innovative software solu-
tion that uses acoustic motion sensing for cursor control on any
keyboard, eliminating the need for additional hardware. KeyFlow
enhances typing fluency by allowing users to keep their hands in
place and move the text cursor with simple finger slides on the
keyboard. The acoustic features can be used to distinguish different
motions because each key’s unique mechanical structure produces
distinctive sound changes when a finger slides over it [10]. Inspired
by this insight, KeyFlow employs a passive acoustic sensing method
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[6-8], which requires minimal hardware, any computer’s built-in or
low-cost microphone, along with correction algorithms, to classify
the sounds of sliding across the keyboard. This paper utilizes the
widely-used SVM as the classification tool and MFCC as the train-
ing feature, comprising 64 one-dimensional data points, requiring
minimal training data, running at high speed, and with low compu-
tational requirements. We provide user-friendly instructions and
training tools, allowing any novice user to configure the system
easily within 5 minutes. During use, the user only needs to slide
their finger lightly over the keyboard without pressing any keys,
to move the cursor, select words, and scroll. This makes the typing
experience more seamless and effortless, reducing hand movement
distance by 78.3% compared to traditional mouse-keyboard meth-
ods. Additionally, KeyFlow supports the importation of presets and
the creation of personalized gestures, further enhancing its utility.

2 KEYFLOW

KeyFlow defines 3 functions(move, select, scroll) and 4 motions(left,
right, up, down). In our examples, we preset 6 easily accessible
keyboard keys - YUIHJK (Fig 1), and users can also customize their
own combinations.
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Figure 2: User Interface and Workflow. Users can
either (1a) customize key combinations and functions or (1b)
import presets. Record gestures, then
train the model. Status updates are shown in red for recording
and green upon completion. Real-time testing
begins by holding the "Ctrl"; it can be paused or resumed
anytime. Customize how many characters

the text cursor moves at a time.

Sound Capture. 3 microphones capture sounds at a 44100 Hz
sampling rate, with each sample lasting 0.0232 seconds (1024 data
points). Each gesture requires 6 seconds of recorded data.

Machine Learning Setup. We use MFCCs as features due to their
high accuracy in key tap classification. We evaluated SVM, MLPNN,
KNN, and Tree models. SVM was chosen for its better performance,

lower hardware requirements, and shorter training time (table 1).

We also use a "lag and vote" system that outputs the most frequent
prediction from the latest three, reducing lag to 0.0232 seconds.
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The software part was written entirely using Python and is
available in GitHub repository. Moving cursor is enabled via the
pyautogui Python library.

Model TPR ACC Training Time

SVM 0.76  0.93 0.015s
MLPNN 0.75 0.92 0.277s
KNN 0.67 0.89 0.026s
Tree 0.37 0.79 0.657s

Table 1: Comparison of Machine Learning Models

3 EVALUATION

This program was assessed in 2 aspects: machine learning model
accuracy with different hardware, and performance evaluation from
12 users.

Technical Review. The model was evaluated with 6 seconds of
training and 9 seconds of testing samples, achieving a True Positive
Rate (TPR) of 0.797 and an Accuracy (ACC) of 0.933. The 6-feature
model completes its training in 0.696 seconds, indicating fast pro-
cessing with low computational demands. Moreover, accuracy tests
across 6 setups involved a range of keyboards, including Alienware,
Logitech, Surface, and MacBook, as well as microphones like the
Razer Kraken and built-in options.

User Experience. Twelve users evaluated KeyFlow on assessing
training time, model accuracy, and performance in typing and delet-
ing tasks compared to conventional methods. After using the tool,
they completed a survey incorporating the System Usability Scale
[2] and custom questions on lag and efficiency. The average scores
(out of 5) were: System Preference (3.67), Simplicity (4.01), Consis-
tency (3.88), Accessibility (4.31), Timeliness (4.75), System Efficiency
(4.25), and Subjective Accuracy (4.72).

The findings highlight a preference for this tool over traditional
keyboard-mouse setups due to its simplicity, consistency, and user-
friendliness. Setup time averaged 2 minutes and 59 seconds, suitable
even for those with minimal machine-learning expertise. The model
demonstrated accuracy between 90%-95%. In performance tests,
deleting words was 15.9% faster and deleting letters 14.0% quicker
than with conventional methods. Most notably, the tool reduced
necessary arm movement for text correction by 78.3%, significantly
enhancing usability and efficiency.

4 DISCUSSION AND FUTURE WORK

KeyFlow integrates mouse functionality into keyboards, reducing
hand movement by 78.3%. However, it relies on built-in micro-
phones, which are not standard in most keyboards. Future work
should explore cost-effective microphones and optimal layouts.

Performance drops in noisy environments, with True Positive
Rate falling from 0.797 to 0.64 and Accuracy from 0.93 to 0.88.
Incorporating noise cancellation algorithms could address this.

Comparative studies with software and hardware are necessary
to validate efficiency. A user study should evaluate the impact of
accuracy on typing speed and experience.

Refining the user interface to eliminate hotkeys and simplify
customization will enhance usability. Addressing these areas will
make KeyFlow more practical and widely applicable.
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